Provably Safe and Efficient Motion Planning with Uncertain Human Dynamics

Shen Li, Nadia Figueroa, Ankit Shah, Julie A. Shah https://safe-dressing.github.io/

Robot-assisted Dressing

Human Physical Safety

Human-aware motion planners Safety = collision avoidance

"Freezing robot problem" under uncertainty

Trautman and Krause. IROS, 2010

Ensuring safety is a top priority, but sometimes,

it comes at the COSt of efficiency

Ensure human safety && Improve task efficiency

Ensure human safety && Improve task efficiency Collision avoidance **OR** safe impact

Human-aware motion planners

Collision avoidance

15 Lasota et al. Foundations and Trends in Robotics, 2017

Compliant controllers

Reduce contact force

Human-aware motion planners

Collision avoidance

Collision avoidance OR safe impact

Lasota et al. Foundations and Trends in Robotics, 2017

Compliant controllers

Reduce contact force

Ensure human safety & Improve task efficiency Collision avoidance **OR** safe impact

OR safe impact

Human velocity at time t

Assumption: deterministic && "smooth"

Gaussian Process $p_{H}^{t+1} = p_{H}^{t} + g(p_{H}^{t}, p_{R}^{t})$

Koller, Berkenkamp, Turchetta, Boedecker, and Krause. Learning-based model predictive control for safe exploration and reinforcement learning. 2019. 27

Koller, Berkenkamp, Turchetta, Boedecker, and Krause. Learning-based model predictive control for safe exploration and reinforcement learning. 2019. 28

Corollary 1:

With a high probability: $\forall t \in [1 \dots T]$, human pos, vel \in ellipsoids

Collision avoidance

A constraint over

- Robot pos
- Human pos ellipsoid

Collision avoidance

A constraint over

- Robot pos
- Human pos ellipsoid

Safe impact

Constraints over

- Robot vel
- Human vel ellipsoid

Collision avoidance

- Robot pos
- Human pos ellipsoid

Safe impact

Constraints over

- Robot vel
- Human vel ellipsoid

Surrogate constraints

OR safe impact

Safety = collision avoidance

 $d_{HR}^{max} = 0.085 \mathrm{m}$

MPC + high probability safety guarantee

Ensure human safety

&& Improve task efficiency

